Types of Fossils
(Follow up to What is a Fossil? Activity)
Created by Molly Ward, Museum of the Rockies
Paleontology Educator and Technology Coordinator

<table>
<thead>
<tr>
<th>Grade Level: Grades K-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation Time: 10-15 minutes</td>
</tr>
<tr>
<td>Activity Duration: 30 minutes-2 hours</td>
</tr>
</tbody>
</table>

Concepts Addressed
- A fossil is evidence of past life.
- Body fossils are fossilized bones, teeth, claws and eggs.
- Microfossils are tiny body fossils often found in accumulations called microsites.
- Trace fossils are fossilized traces and impressions like footprints, teeth marks, skin impressions, nests, burrows and poop.
- Newly discovered soft tissue fossils are preserved flexible blood vessels and cells inside of bone.

Objectives
The student will:
- Understand that body fossils provide direct evidence of past life.
- Understand that trace fossils provide indirect evidence of past life.
- Classify fossils into body and trace fossil categories.

Materials Included
- Specimens (use only specimens 1, 2, 4-6, 8, 10, 12, 14, 17-19)
 1. Petrified wood
 2. Dinosaur bone (vertebrae)
 3. n/a
 4. Burrow endocast
 5. Dinosaur claw (replica)
 6. Dinosaur tooth (replica)
 7. n/a
 8. Plant impression
 9. n/a
 10. Dinosaur soft tissue (laminated photo)
 11. n/a
12. Dinosaur skull (replica)
13. n/a
14. Dinosaur claw (replica)
15. n/a
16. n/a
17. Shell endocast
18. Dinosaur track fossil (replica)
19. Dinosaur egg shell
• Magnifying glasses

Background
Once we have established which of the specimens provided are fossils, we can further classify
these fossils as either **body fossils**—fossilized body parts such as bones, teeth, claws and eggs,
or **trace fossils**—footprints, teeth marks, impressions, nests, burrows and dung. These are
important classifications for scientists to make and understand when thinking about what we
can observe about a fossil and what can be inferred from that about the animal itself of its
behavior. In this activity, students classify the fossil specimens provided as trace or body fossils
and provide an explanation for their classification.

Procedure
1. With your class, discuss the differences between trace fossils and body fossils. Talk
about what might be classified as a body fossil and what might be classified as a trace
fossil and why. Discuss what kinds of information you might be able to learn from each
kinds of fossil.
2. Set up only the fossil specimens from the specimen collection provided (numbers listed
in materials section) with appropriate matching cards around a table or around the room.
3. Have students take out a sheet of paper and pencil and number their sheet from 1-19.
4. Explain that students will be observing a series of fossil specimens. They need to decide
if fossil is a body or trace fossil and why they think so.
5. Divide the students up among the 12 fossil specimens. Allow 1-2 minutes per station
and tell students when to move on to the next. Or, allow students to take their time and
make this into a longer activity. Remind students to carefully match up the numbers of
the specimens with the numbers on their paper as some of the numbers were originally
assigned to specimens we are not using for this activity.
6. After students have had a chance to observe every specimen, have them return to their
seats.
7. As a class, go through the specimens together and discuss observations and conclusions
about whether each is a body or trace fossil and why. Use *What is a Fossil?* Notes to aid
you in this discussion. As each is discussed, discuss with the group what kinds of
information a paleontologist could learn from that particular fossil. For example, from a
dinosaur bone a paleontologist might be able to learn about the type of dinosaur from
the shape, the size/life stage of a dinosaur from the size, possible injuries the dinosaur
had from pathologies (marks indicating injured bone) and age from the internal
structure of the bone if histology is done. The first two ideas here (and others) should be
clear to the students—pathologies and histology are more advanced concepts but are included here because some students might mention them.

Extensions
- Have the students create separate trace and body “fossil collections” by drawing the specimens on separate labeled pieces of paper. Include descriptions about what each fossil is and what we can learn from it.
<table>
<thead>
<tr>
<th>Number</th>
<th>Specimen</th>
<th>Fossil or Not a Fossil</th>
<th>Type of Fossil</th>
<th>Explanation--Fossil or Not a Fossil</th>
<th>Explanation--Type of Fossil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Petrified Wood</td>
<td>Fossil</td>
<td>Body Fossil/Trace Fossil</td>
<td>Petrified wood is a fossil. It shows evidence of past life in the texture of the wood grain.</td>
<td>Because petrification means that all of the organism’s material is replaced by minerals, this fossil would be classified as a trace fossil--minerals that retain the grain texture of the living organism. However, if any of the original material from the organism is retained, it would be classified as a body fossil.</td>
</tr>
<tr>
<td>2</td>
<td>Dinosaur Bone</td>
<td>Fossil</td>
<td>Body Fossil</td>
<td>This dinosaur bone, which is a vertebrae from a relatively small duck-billed dinosaur, is a fossil. It shows evidence of past life by its shape and texture.</td>
<td>This is a body fossil because it retains actual remains of the animal.</td>
</tr>
<tr>
<td>3</td>
<td>Dendrite</td>
<td>Not a Fossil</td>
<td></td>
<td>A dendrite is not a fossil. It does not show evidence of past life. It is a rock with mineral crystals forming a branching pattern on it.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Burrow endocast</td>
<td>Fossil</td>
<td>Trace Fossil</td>
<td>This burrow endocast is a fossil. It shows evidence of past life because it is formed inside an animal produced burrow. An endocast is formed when something created by life (like a burrow) is filled in with sediment. The sediment retains the shape of the burrow.</td>
<td>This is a trace fossil because it implies that the organism was there.</td>
</tr>
<tr>
<td>5</td>
<td>Dinosaur Claw (replica)</td>
<td>Fossil</td>
<td>Body Fossil</td>
<td>A dinosaur claw is a fossil. This one is a replica of a real claw that came from a Velociraptor. It shows evidence of past life because it is a body part left behind when an animal died.</td>
<td>This is a body fossil because it retains actual remains of the animal.</td>
</tr>
<tr>
<td>6</td>
<td>Dinosaur Tooth (replica)</td>
<td>Fossil</td>
<td>Body Fossil</td>
<td>A dinosaur tooth is a fossil. This one is a replica of a real fossil tooth that came from an Allosaurus. It shows evidence of past life because it is a body part left behind when an animal died or lost it.</td>
<td>This is a body fossil because it retains actual remains of the animal.</td>
</tr>
<tr>
<td>7</td>
<td>Rock</td>
<td>Not a Fossil</td>
<td></td>
<td>This is not a fossil. It is a mineral called Talc. It does not show evidence of life.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Plant Impression</td>
<td>Fossil</td>
<td>Trace Fossil</td>
<td>This is a fossil. It is an imprint of a plant that was left behind when the plant material rotted away. It shows evidence of life because we can clearly tell that a plant (living organism) left it’s mark here.</td>
<td>This is a trace fossil because it implies that the organism was there.</td>
</tr>
<tr>
<td></td>
<td>Rock</td>
<td>Not a Fossil</td>
<td>This rock is not a fossil. It is a type of rock called basalt. The holes in the rock are formed by air bubbles during a volcanic eruption. It does not show evidence of life.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dinosaur soft tissue (photo)</td>
<td>Fossil</td>
<td>This is a photo of dinosaur soft tissue which is a fossil. This soft tissue is from a fossilized T. rex bone. It shows evidence of life because it is actual tissue from the body of an animal that has been preserved. It is an exciting and new fossil find that is not yet completely understood by scientists.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body Fossil</td>
<td>This is a body fossil because it is retains actual remains of the animal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock</td>
<td>Not a Fossil</td>
<td>This rock is not a fossil. It is a rock called a concretion. Concretions often form shapes that remind us of living organisms, but they are formed in ways that do not involve life. It does not show evidence of life.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dinosaur Skull (replica)</td>
<td>Fossil</td>
<td>This real baby Maiasaura skull from which this replica is made is a fossil. It shows evidence of life because the bones are the remains of a once living dinosaur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body Fossil</td>
<td>This is a body fossil because it is retains actual remains of the animal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock</td>
<td>Not a Fossil</td>
<td>This rock is not a fossil. Although it is egg shaped, it is just a rock. Sometimes processes in nature that do not involve life shape rocks in ways that resemble fossil forms. This rock was likely rounded in a river. It does not show evidence of life.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dinosaur Claw (replica)</td>
<td>Fossil</td>
<td>The real Allosaurus front limb claw fossil from which this replica was made is a fossil. It shows evidence of life because it is a preserved body part from a once living animal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body Fossil</td>
<td>This is a body fossil because it is retains actual remains of the animal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Rock</td>
<td>Not a Fossil</td>
<td>This rock is not a fossil. It is a rock called a concretion. Concretions often form shapes that remind us of living organisms, but they are formed in ways that do not involve life. It does not show evidence of life.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a table showing examples of rocks that are not fossils and fossils that are body fossils.
<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Not a Fossil</th>
<th>These rocks are not fossils. They are smooth pebbles, likely rounded and polished in a stream. They do not show evidence of life. Some people mistake rocks like these for gastroliths—rocks that some scientists believe dinosaurs ingested to help break down their food. It is very difficult to know if a rounded, polished rock is a gastrolith. The only way to really even come close is to find the rounded, polished rocks inside of a dinosaur skeleton fossil. In that context, you may be able to argue that they show evidence of life and could be called fossils.</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Shell endocast</td>
<td>Fossil</td>
<td>Trace Fossil</td>
</tr>
<tr>
<td>18</td>
<td>Dinosaur Tracks (replica)</td>
<td>Fossil</td>
<td>Trace Fossil</td>
</tr>
<tr>
<td>19</td>
<td>Dinosaur Egg Shell</td>
<td>Fossil</td>
<td>Body Fossil</td>
</tr>
</tbody>
</table>